Periodic Table Personified [image]

Have you ever tried memorizing periodic table? It is a daunting task as it has lot of elements and all coded with 2 alphabet characters. So, what is the solution? There are various methods used to do that. For one check out Wonderful Life with the Elements: The Periodic Table Personified by Bunpei Yorifuji. In his effortm Bunpei personified all the elements. It is a fun way to identify eact element and make it easily recognizable.

In his book, Yorifuji makes the many elements seem a little more individual by illustrating each one as as an anthropomorphic cartoon character, with distinctive hairstyles and clothes to help readers tell them apart. As for example, take Nitrogens, they have mohawks because they “hate normal,” while in another example, noble gases have afros because they are “too cool” to react to extreme heat or cold. Man-made elements are depicted in robot suits, while elements used in industrial application wear business attire.



Image by Wired

Originally Posted at: Periodic Table Personified [image]

Nov 07, 19: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://news.analyticsweek.com/tw/newspull.php): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://news.analyticsweek.com/tw/newspull.php): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://news.analyticsweek.com/tw/newspull.php): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

[  COVER OF THE WEEK ]

image
Complex data  Source

[ AnalyticsWeek BYTES]

>> Fighting the Amazon Rainforest Fires with Real-Time Data [Guest Post] by analyticsweek

>> Two-Tier Data Storage: A GigaOm Market Landscape Report by analyticsweekpick

>> Cheers to Stream-based Data Integration…and to Never Losing a Byte!! by analyticsweek

Wanna write? Click Here

[ FEATURED COURSE]

Master Statistics with R

image

In this Specialization, you will learn to analyze and visualize data in R and created reproducible data analysis reports, demonstrate a conceptual understanding of the unified nature of statistical inference, perform fre… more

[ FEATURED READ]

Thinking, Fast and Slow

image

Drawing on decades of research in psychology that resulted in a Nobel Prize in Economic Sciences, Daniel Kahneman takes readers on an exploration of what influences thought example by example, sometimes with unlikely wor… more

[ TIPS & TRICKS OF THE WEEK]

Data aids, not replace judgement
Data is a tool and means to help build a consensus to facilitate human decision-making but not replace it. Analysis converts data into information, information via context leads to insight. Insights lead to decision making which ultimately leads to outcomes that brings value. So, data is just the start, context and intuition plays a role.

[ DATA SCIENCE Q&A]

Q:Compare R and Python
A: R
– Focuses on better, user friendly data analysis, statistics and graphical models
– The closer you are to statistics, data science and research, the more you might prefer R
– Statistical models can be written with only a few lines in R
– The same piece of functionality can be written in several ways in R
– Mainly used for standalone computing or analysis on individual servers
– Large number of packages, for anything!

Python
– Used by programmers that want to delve into data science
– The closer you are working in an engineering environment, the more you might prefer Python
– Coding and debugging is easier mainly because of the nice syntax
– Any piece of functionality is always written the same way in Python
– When data analysis needs to be implemented with web apps
– Good tool to implement algorithms for production use

Source

[ VIDEO OF THE WEEK]

@chrisbishop on futurist's lens on #JobsOfFuture #FutureofWork #JobsOfFuture #Podcast

 @chrisbishop on futurist’s lens on #JobsOfFuture #FutureofWork #JobsOfFuture #Podcast

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

Processed data is information. Processed information is knowledge Processed knowledge is Wisdom. – Ankala V. Subbarao

[ PODCAST OF THE WEEK]

Andrea Gallego(@risenthink) / @BCG on Managing Analytics Practice #FutureOfData #Podcast

 Andrea Gallego(@risenthink) / @BCG on Managing Analytics Practice #FutureOfData #Podcast

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

Facebook users send on average 31.25 million messages and view 2.77 million videos every minute.

Sourced from: Analytics.CLUB #WEB Newsletter

January 30, 2017 Health and Biotech analytics news roundup

The latest in biotech and health analytics, and related topics:

Deep learning algorithm does as well as dermatologists in identifying skin cancer: The Stanford researchers began with Google’s image recognition algorithm, which they further trained with images of potentially cancerous skin lesions from the Internet.

Study: EHRs Lead to More Imaging Tests, not Less: Electronic records are intended to reduce redundancy, and therefore cost. These new results call that into question, and call for a reevaluation of the role of EHRs.

The DNA Test as Horoscope: Sarah Zhang discusses ‘lifestyle’ DNA sequencing, like a company that makes wine recommendations.

The genomics intelligence revolution: Mahni Ghorashi and Gaurav Garg discuss the history of whole genome sequencing, the role of data science in the field, and its future roles in healthcare and beyond.

Source: January 30, 2017 Health and Biotech analytics news roundup by pstein

Which New Features Do Users Want? Decoding Customer Requests

Like every other feature in your application, the world of embedded analytics is not static. The outer bounds of capabilities customers want are constantly evolving. At the same time, older capabilities like data visualizations—which customers once considered modern and innovative—are now table stakes.

Your end users will always have new requests (and complaints) about your application’s embedded analytics. It’s inevitable. And as long as everything’s working as it should— you’re keeping bugs in check, your app is reliable—most complaints are likely new feature requests in disguise.

>> Related: 5 Early Indicators Your Analytics Will Fail <<

Unfortunately, translating those requests into actual analytics features can be difficult. What do your users really want from their dashboards and reports? Decoding these complaints means adding valuable new features to your roadmap, and avoiding a panicked scramble to add them before it’s too late and your customers start churning.

Use this chart to translate common end user requests (on the left) into the analytics features your users really want (on the right):

If You’re Hearing This…

 …Then Consider Adding This Analytics Capability to Your Application

“We need insights on what’s likely to happen in the future so we can figure out how to correct issues before they become disastrous.”

“The data is great, but it’s in a vacuum and not changing the way we do business.”

“When we’re using the analytics, it feels like we have to learn an entirely new application.”

“Users dislike having to log in twice (once to the app, once to the dashboards). Plus, the application admins say it’s a pain to manage security settings in two different places.”

“When we need to update the information in the dashboard, we don’t like having to leave the app to do so.”

“We have to create multiple new reports just to view different cross sections of data, such as different product lines or date ranges. It’s tedious and inefficient.”

“Our users need to access info from the field and the dashboards don’t work well on mobile devices.”

To learn more, get our Blueprint for Modern Analytics >

Source: Which New Features Do Users Want? Decoding Customer Requests by analyticsweek

Oct 31, 19: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://news.analyticsweek.com/tw/newspull.php): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://news.analyticsweek.com/tw/newspull.php): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://news.analyticsweek.com/tw/newspull.php): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

[  COVER OF THE WEEK ]

image
Conditional Risk  Source

[ AnalyticsWeek BYTES]

>> QlikSense Set Analysis – Creating and Using Variables by analyticsweek

>> Applying Data-Driven Analytics to Sales by jelaniharper

>> The Strategic and Tactical Roles of Customer Surveys by bobehayes

Wanna write? Click Here

[ FEATURED COURSE]

Hadoop Starter Kit

image

Hadoop learning made easy and fun. Learn HDFS, MapReduce and introduction to Pig and Hive with FREE cluster access…. more

[ FEATURED READ]

Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython

image

Python for Data Analysis is concerned with the nuts and bolts of manipulating, processing, cleaning, and crunching data in Python. It is also a practical, modern introduction to scientific computing in Python, tailored f… more

[ TIPS & TRICKS OF THE WEEK]

Data Have Meaning
We live in a Big Data world in which everything is quantified. While the emphasis of Big Data has been focused on distinguishing the three characteristics of data (the infamous three Vs), we need to be cognizant of the fact that data have meaning. That is, the numbers in your data represent something of interest, an outcome that is important to your business. The meaning of those numbers is about the veracity of your data.

[ DATA SCIENCE Q&A]

Q:What is the difference between supervised learning and unsupervised learning? Give concrete examples
?

A: * Supervised learning: inferring a function from labeled training data
* Supervised learning: predictor measurements associated with a response measurement; we wish to fit a model that relates both for better understanding the relation between them (inference) or with the aim to accurately predicting the response for future observations (prediction)
* Supervised learning: support vector machines, neural networks, linear regression, logistic regression, extreme gradient boosting
* Supervised learning examples: predict the price of a house based on the are, size.; churn prediction; predict the relevance of search engine results.
* Unsupervised learning: inferring a function to describe hidden structure of unlabeled data
* Unsupervised learning: we lack a response variable that can supervise our analysis
* Unsupervised learning: clustering, principal component analysis, singular value decomposition; identify group of customers
* Unsupervised learning examples: find customer segments; image segmentation; classify US senators by their voting.

Source

[ VIDEO OF THE WEEK]

@chrisbishop on futurist's lens on #JobsOfFuture #FutureofWork #JobsOfFuture #Podcast

 @chrisbishop on futurist’s lens on #JobsOfFuture #FutureofWork #JobsOfFuture #Podcast

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

Data that is loved tends to survive. – Kurt Bollacker, Data Scientist, Freebase/Infochimps

[ PODCAST OF THE WEEK]

#BigData @AnalyticsWeek #FutureOfData #Podcast with  John Young, @Epsilonmktg

 #BigData @AnalyticsWeek #FutureOfData #Podcast with John Young, @Epsilonmktg

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

By then, our accumulated digital universe of data will grow from 4.4 zettabyets today to around 44 zettabytes, or 44 trillion gigabytes.

Sourced from: Analytics.CLUB #WEB Newsletter

Visualization’s Twisted Path

Visualization is not a straight path from vision to reality. It is full of twists and turns, rabbit trails and road blocks, foul-ups and failures. Initial hypotheses are often wrong, and promising paths are frequently dead ends. Iteration is essential. And sometimes you need to change your goals in order to reach them.

We are as skilled at pursuing the wrong hypotheses as anyone. Let us show you.

We had seen the Hierarchical Edge Bundling implemented by Mike Bostock in D3. It really clarified patterns that were almost completely obfuscated when straight lines were used. 

Edge Bundling

We were curious if it might do the same thing with geographic patterns. Turns out Danny Holten, creator of the algorithm, had already done something similar. But we needed to see it with our own data.

We grabbed some state-to-state migration data from the US Census Bureau, then found Corneliu Sugar’s code for doing force directed edge bundling and got to work.

To start, we simply put a single year’s (2014) migration data on the map. Our first impression: sorrow, dejection and misery. It looked better than a mess of straight lines, but not much better. Chin up, though. This didn’t yet account for how many people were flowing between each of the connections — only whether there was a connection or not. 

Unweighted edge bundled migration

Unweighted edge bundled migration

With edge bundling, each path between two points can be thought to have some gravity pulling other paths toward it while itself being pulled by those other paths. In the first iteration, every part of a path has the same gravity. By changing the code to weight the bundling, we add extra gravity to the paths more people move along.

Weighted edge bundled migration

Weighted edge bundled migration

Alas, things didn’t change much. And processing was taking a long time with all those flows. When the going gets tough, simplify. We cut the data into two halves, comparing westward flows to eastward flows.

East to west migration

East to west migration

West to east migration

West to east migration

Less data meant cleaner maps. We assumed there would be some obvious difference between these two, but these maps could be twins. We actually had to flip back and forth between them to see that there was indeed a difference.

So our dreams of mindblowing insight on a migration data set using edge bundling were a bust. But, seeing one visualization regularly leads to ideas about another. We wondered what would happen if we animated the lines from source to destination? For simplicity, we started with just eastward migration. 

Lasers

Lasers

Cool, it’s like laser light leisurely streaming through invisible fibre optic cables. But there’s a problem. Longer flows appear to indicate higher volume (which is misleading as their length is not actually encoding volume, just distance). So we tried using differential line lengths to represent the number of people, sticking with just eastward flows. 

Star Wars blasters

Star Wars blasters

Here we get a better sense of the bigger sources, especially at the beginning of the animation, however, for some paths, like California to Nevada, we end up with a solid line for most of the loop. The short geographic distance obscures the large migration of people. We wondered if using dashed lines would fix this—particularly in links like California to Nevada.

Machine gun bursts

Machine gun bursts

This gives us a machine gun burst at the beginning with everything draining into 50 little holes at the end. We get that sense of motion for geographically close states, but the visual doesn’t match our mental model of migration. Migrants don’t line up in a queue at the beginning of the year, leaving and arriving at the same time. Their migration is spread over the year.

What if instead we turn the migration numbers into a rate of flow. We can move dots along our edge bundled paths, have each dot represent 1000 people and watch as they migrate. The density of the dots along a path will represent the volume.  This also has the convenience of being much simpler to explain.

Radar signals

Radar signals

We still have a burst of activity (like radar signals) at the beginning of the loop, so we’ll stagger the start times to remove this pulsing effect.

Staggered starts

Staggered starts

Voilà. This finally gives us a visual that matches our mental model: people moving over the period from one state to another. Let’s add back westward movement.

Ants

Ants

Very cool, but with so much movement it’s difficult to tell who’s coming and who’s going. We added a gradient to the paths to make dots appear blue as they leave a state and orange as they arrive.

Coloured ants

Coloured ants

Let’s be honest, this looks like a moderately organized swarm of ants. But it is a captivating swarm that people can identify with. Does it give us any insight? Well not any of the sort we were originally working for. No simple way to compare years, no clear statements about the inflows and outflows. If we want to make sense of the data and draw specific conclusions… well other tools might be more effective.

But it is an enchanting overview of migration. It shows the continuous and overwhelming amount of movement across the country and highlights some of the higher volume flows in either direction. It draws you in and provides you with a perspective not readily available in a set of bar charts. So we made an interactive with both.

Each dot represents 1,000 people and the year’s migration happens in 10 seconds. Or if you’d prefer, each dot can represent 1 person, and you can watch the year play out in just over 2 hours and 45 minutes. If you’re on a desktop you can interact with it to view a single state’s flow. And of course for mobile and social media, we made the obligatory animated gif.

And just when we thought we’d finished, new data was released and were were obliged to update things for 2015.

Glowing ants

Glowing ants

Building a visualization that is both clear and engaging is hard work. Indeed, sometimes it doesn’t work at all. In this post we’ve only highlighted a fraction of the steps we took.  We also fiddled with algorithm settings, color, transparency and interactivity.  We tested out versions with net migration. We tried overlaying choropleths and comparing the migration to other variables like unemployment and birth rate. None of these iterations even made the cut for this blog post.

An intuitive, engaging, and insightful visualization is rare precisely because of how much effort it takes. We continue to believe that the effort is worthwhile.

Originally Posted at: Visualization’s Twisted Path by analyticsweek

Oct 24, 19: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://news.analyticsweek.com/tw/newspull.php): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://news.analyticsweek.com/tw/newspull.php): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://news.analyticsweek.com/tw/newspull.php): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

[  COVER OF THE WEEK ]

image
Data security  Source

[ AnalyticsWeek BYTES]

>> Data APIs: Gateway to Data-Driven Operation and Digital Transformation by analyticsweek

>> Sample Size in Usability Studies: How Well Does the Math Match Reality? by analyticsweek

>> How mobile consumers are using customer service apps [Infographics] by v1shal

Wanna write? Click Here

[ FEATURED COURSE]

Python for Beginners with Examples

image

A practical Python course for beginners with examples and exercises…. more

[ FEATURED READ]

On Intelligence

image

Jeff Hawkins, the man who created the PalmPilot, Treo smart phone, and other handheld devices, has reshaped our relationship to computers. Now he stands ready to revolutionize both neuroscience and computing in one strok… more

[ TIPS & TRICKS OF THE WEEK]

Finding a success in your data science ? Find a mentor
Yes, most of us dont feel a need but most of us really could use one. As most of data science professionals work in their own isolations, getting an unbiased perspective is not easy. Many times, it is also not easy to understand how the data science progression is going to be. Getting a network of mentors address these issues easily, it gives data professionals an outside perspective and unbiased ally. It’s extremely important for successful data science professionals to build a mentor network and use it through their success.

[ DATA SCIENCE Q&A]

Q:What is star schema? Lookup tables?
A: The star schema is a traditional database schema with a central (fact) table (the “observations”, with database “keys” for joining with satellite tables, and with several fields encoded as ID’s). Satellite tables map ID’s to physical name or description and can be “joined” to the central fact table using the ID fields; these tables are known as lookup tables, and are particularly useful in real-time applications, as they save a lot of memory. Sometimes star schemas involve multiple layers of summarization (summary tables, from granular to less granular) to retrieve information faster.

Lookup tables:
– Array that replace runtime computations with a simpler array indexing operation

Source

[ VIDEO OF THE WEEK]

Big Data Introduction to D3

 Big Data Introduction to D3

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

It is a capital mistake to theorize before one has data. Insensibly, one begins to twist the facts to suit theories, instead of theories to

[ PODCAST OF THE WEEK]

@JustinBorgman on Running a data science startup, one decision at a time #Futureofdata #Podcast

 @JustinBorgman on Running a data science startup, one decision at a time #Futureofdata #Podcast

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

140,000 to 190,000. Too few people with deep analytical skills to fill the demand of Big Data jobs in the U.S. by 2018.

Sourced from: Analytics.CLUB #WEB Newsletter

Voices in AI – Episode 86: A Conversation with Amir Husain

[voices_in_ai_byline]

About this Episode

Episode 86 of Voices in AI features Byron speaking with fellow author Amir Husain about the nature of Artificial Intelligence and Amir’s book The Sentient Machine.

Listen to this one-hour episode or read the full transcript at www.VoicesinAI.com

Transcript Excerpt

Byron Reese: This is Voices in AI brought to you by GigaOm, and I’m Byron Reese. Today my guest is Amir Husain. He is the founder and CEO of SparkCognition Inc., and he’s the author of The Sentient Machine, a fine book about artificial intelligence. In addition to that, he is a member of the AI task force with the Center for New American Security. He is a member of the board of advisors at UT Austin’s Department of Computer Science. He’s a member of the Council on Foreign Relations. In short, he is a very busy guy, but has found 30 minutes to join us today. Welcome to the show, Amir.

Amir Husain: Thank you very much for having me Byron. It’s my pleasure.

You and I had a cup of coffee a while ago and you gave me a copy of your book and I’ve read it and really enjoyed it. Why don’t we start with the book. Talk about that a little bit and then we’ll talk about SparkCognition Inc. Why did you write The Sentient Machine: The Coming Age of Artificial Intelligence?

Byron, I wrote this book because I thought that there was a lot of writing on artificial intelligence—what it could be. There’s a lot of sci fi that has visions of artificial intelligence and there’s a lot of very technical material around where artificial intelligence is as a science and as a practice today. So there’s a lot of that literature out there. But what I also saw was there was a lot of angst back in 2015, 2014. I actually had a personal experience in that realm where outside of my South by Southwest talks there was an anti-AI protest.

So just watching those protesters and seeing what their concerns were, I felt that a lot of the sort of philosophical questions, existential questions around the advent of AI, if AI indeed ends up being like Commander Data, it has sentience, it becomes artificial general intelligence, then it will be able to do the jobs better than we can and it will be more capable in let’s say the ‘art of war’ than we are and therefore does this mean that we will lose our jobs. We will be meaningless and our lives will be lacking in meaning and maybe the AI will kill us?

These are the kinds of concerns that people have had around AI and I wanted to sort of reflect on notions of man’s ability to create—the aspects around that that are embedded in our historical and religious tradition and what our conception of Man vs. he who can create, our creator—what those are and how that influences how we see this age of AI where man might be empowered to create something which can in turn create, which can in turn think.

There’s a lot of folks also that feel that this is far away, and I am an AI practitioner and I agree I don’t think that artificial general intelligence is around the corner. It’s not going to happen next May, even though I suppose some group could surprise us, but the likely outcome is that we are going to wait a few decades. I think waiting a few decades isn’t a big deal because in the grand scheme of things, in the history of the human race, what is a few decades? So ultimately the questions are still valid and this book was written to address some of those existential questions lurking in elements of philosophy, as well as science, as well as the reality of where AI stands at the moment.

So talk about those philosophical questions just broadly. What are those kinds of questions that will affect what happens with artificial intelligence?

Well I mean one question is a very simple one of self-worth. We tend to define ourselves by our capabilities and the jobs that we do. Many of our last names in many cultures are literally indicative of our profession. You know goldsmiths as an example, farmer as an example. And this is not just a European thing. Across the world you see this phenomenon of last names just reflecting the profession of a woman or a man. And it is to this extent that we internalize the jobs that we do as essentially being our identity, literally to the point where we take it on as a name.

So now when you de-link a man or a woman’s ability to produce or to engage in that particular labor that is a part of their identity, then what’s left? Are you still, the human that you were with that skill? Are you less of a human being? Is humanity in any way linked to your ability to conduct this kind of economic labor? And this is one question that I explored in the book because I don’t know whether people really contemplate this issue so directly and think about it in philosophical terms, but I do know that subjectively people get depressed when they’re confronted with the idea that they might not be able to do the job that they are comfortable doing or have been comfortable doing for decades. So at some level obviously it’s having an impact.

And the question then is: is our ability to perform a certain class of economic labor in any way intrinsically connected to identity? Is it part of humanity? And I sort of explore this concept and I say “OK well, let’s sort of take this away and let’s cut this away let’s take away all of the extra frills, let’s take away all of what is not absolutely fundamentally uniquely human.” And that was an interesting exercise for me. The conclusions that I came to—I don’t know whether I should spoil the book by sharing it here—but in a nutshell—this is no surprise—that our cognitive function, our higher order thinking, our creativity, these are the things which make us absolutely unique amongst the known creation. And it is that which makes us unique and different. So this is one question of self worth in the age of AI, and another one is…

Just to put a pin in that for a moment, in the United States the workforce participation rate is only about 50% to begin with, so only about 50% of people work because you’ve got adults that are retired, you have people who are unable to work, you have people that are independently wealthy… I mean we already had like half of adults not working. Does it does it really rise to the level of a philosophical question when it’s already something we have thousands of years of history with? Like what are the really needy things that AI gets at? For instance, do you think a machine can be creative?

Absolutely I think the machine can be creative.

You think people are machines?

I do think people are machines.

So then if that’s the case, how do you explain things like the mind? How do you think about consciousness? We don’t just measure temperature, we can feel warmth, we have a first person experience of the universe. How can a machine experience the world?

Well you know look there’s this age old discussion about qualia and there’s this discussion about the subjective experience, and obviously that’s linked to consciousness because that kind of subjective experience requires you to first know of your own existence and then apply the feeling of that experience to you in your mind. Essentially you are simulating not only the world but you also have a model of yourself. And ultimately in my view consciousness is an emergent phenomenon.

You know the very famous Marvin Minsky hypothesis of The Society of Mind. And in all of its details I don’t know that I agree with every last bit of it, but the basic concept is that there are a large number of processes that are specialized in different things that are running in the mind, the software being the mind, and the hardware being the brain, and that the complex interactions of a lot of these things result in something that looks very different from any one of these processes independently. This in general is a phenomenon that’s called emergence. It exists in nature and it also exists in computers.

One of the first few graphical programs that I wrote as a child in basic [coding] was drawing straight lines, and yet on a CRT display, what I actually saw were curves. I’d never drawn curves but it turns out that when you light a large number of pixels with a certain gap in the middle and it’s on a CRT display there there are all sorts of effects and interactions like the Moire effect and so on and so forth where what you thought you were drawing was lines, and it shows up if you look at it from an angle, as curves.

So I mean the process of drawing a line is nothing like drawing a curve, there was no active intent or design to produce a curve, the curve just shows up. It’s a very simple example of a kid writing a few lines of basic can do this experiment and look at this but there are obviously more complex examples of emergence as well. And so consciousness to me is an emergent property, it’s an emergent phenomenon. It’s not about the one thing.

I don’t think there is a consciousness gland. I think that there are a large number of processes that interact to produce this consciousness. And what does that require? It requires for example a complex simulation capability which the human brain has, the ability to think about time, to think about objects, model them and to also apply your knowledge of physical forces and other phenomena within your brain to try and figure out where things are going.

So that simulation capability is very important, and then the other capability that’s important is the ability to model yourself. So when you model yourself and you put yourself in a simulator and you see all these different things happening, there is not the real pain that you experience when you simulate for example being struck by an arrow, but there might be some fear and a why is that fear emanating? It’s because you watch your own model in your imagination, in your simulation suffer some sort of a problem. And now that is a very internal. Right? None of this has happened in the external world but you’re conscious of this happening, so to me at the end of the day it has some fundamental requirements. I believe simulation and self modeling are two of those requirements, but ultimately it’s an emergent property.

Listen to this one-hour episode or read the full transcript at www.VoicesinAI.com

[voices_in_ai_link_back]

Byron explores issues around artificial intelligence and conscious computers in his new book The Fourth Age: Smart Robots, Conscious Computers, and the Future of Humanity.

Originally Posted at: Voices in AI – Episode 86: A Conversation with Amir Husain

Better Recruiting Metrics Lead to Better Talent Analytics

metrics

According to Josh Bersin in Deloitte’s 2013 report, Talent Analytics: From Small Data to Big Data, 75% of HR leaders acknowledge analytics are important to the success of their organizations. But 51% have no formal talent analytics plans in place. Nearly 40% say they don’t have the resources to conduct sound talent analytics. Asked to rate their own workforce analytics skills, another 56% said poor.

As Bersin further noted in a recent PeopleFluent article, HR Forecast 2014, “Only 14% of the companies we studied are even starting to analyze people-related data in a statistical way and correlate it to business outcomes. The rest are still dealing with reporting, data cleaning and infrastructure challenges.”

There’s a striking gap between the large number of companies that recognize the importance of metrics and talent analytics and the smaller number that actually have the means and expertise to put them to use.

Yes, we do need to gather and maintain the right people data first, such as when and where applicants apply for jobs, and the specific skills an employee has. But data is just information captured by recruiting system or software already in place. It doesn’t tell any story.

Compare data against goals or thresholds and it turns into insight, a.k.a workforce metrics — measurements with a goal in mind, otherwise known as Key Performance Indicators (KPIs), all of which gauge quantifiable components of a company’s performance. Metrics reflect critical factors for success and help a company measure its progress towards strategic goals.

But here’s where it gets sticky. You don’t set off on a cross-country road trip until you know how to read the map.

For companies, it’s important to agree on the right business metrics – and it all starts with recruiting. Even with standard metrics for retention and attrition in place, some companies also track dozens of meaningless metrics— not tied to specific business goals, not helping to improve business outcomes.

I’ve seen recruiting organizations spend all their time in the metrics-gathering phase, and never get around to acting on the results — in industry parlance, “boiling the ocean.” You’re far better off gathering a limited number of metrics that you actually analyze and then act upon.

Today many organizations are focused on developing recruiting metrics and analytics because there’s so much data available today on candidates and internal employees (regardless of classification). Based on my own recruiting experience and that of many other recruiting leaders, here are what I consider the Top 5 Recruiting Metrics:

1. New growth vs. attrition rates. What percentage of the positions you fill are new hires vs. attrition? This shows what true growth really looks like. If you are hiring mostly due to attrition, it would indicate that selection, talent engagement, development and succession planning need attention. You can also break this metric down by division/department, by manager and more.

2. Quality of hires. More and more, the holy grail of hiring. Happily, all measurable: what individual performances look like, how long they stay, whether or not they are top performers, what competencies comprise their performance, where are they being hired from and why.

3. Sourcing. Measuring not just the what but the why of your best talent pools: job boards, social media, other companies, current employees, etc. This metric should also be applied to quality of hire: you’ll want to know where the best candidates are coming from. Also, if you want to know the percentage rate for a specific source, divide the number of source hires by the number of external hires. (For example, total Monster job board hires divided by total external hires.)

4. Effectiveness ratio. How many openings do you have versus how many you’re actually filling?  You can also measure your recruitment rate by dividing the total number of new hires per year by the total number of regular headcount reporting to work each year. Your requisitions filled percent can be tallied by dividing the total number of filled requisitions by the total number of approved requisitions.

5. Satisfaction rating. An important one, because it’s not paid much attention to when your other metrics are in good shape. Satisfaction ratings can be gleaned from surveys of candidates, new hires and current employees looking for internal mobility. While your overall metrics may be positive, it’s important to find out how people experience your hiring process.

As your business leaves behind those tedious spreadsheets and manual reports and moves into Talent Analytics, metrics are going to be what feeds those results. Consider which metrics are the most appropriate for your business — and why. And then, the real analysis can begin, and help your organization make better talent-related decisions.

Article originally appeared HERE.

Source by analyticsweekpick

Oct 17, 19: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://news.analyticsweek.com/tw/newspull.php): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://news.analyticsweek.com/tw/newspull.php): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents(http://news.analyticsweek.com/tw/newspull.php): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

[  COVER OF THE WEEK ]

image
Accuracy  Source

[ AnalyticsWeek BYTES]

>> Aug 01, 19: #AnalyticsClub #Newsletter (Events, Tips, News & more..) by admin

>> Oct 03, 19: #AnalyticsClub #Newsletter (Events, Tips, News & more..) by admin

>> LogicAI and Kaggle team up on Kaggle Days events in 2019 and beyond! by analyticsweekpick

Wanna write? Click Here

[ FEATURED COURSE]

CS229 – Machine Learning

image

This course provides a broad introduction to machine learning and statistical pattern recognition. … more

[ FEATURED READ]

The Future of the Professions: How Technology Will Transform the Work of Human Experts

image

This book predicts the decline of today’s professions and describes the people and systems that will replace them. In an Internet society, according to Richard Susskind and Daniel Susskind, we will neither need nor want … more

[ TIPS & TRICKS OF THE WEEK]

Finding a success in your data science ? Find a mentor
Yes, most of us dont feel a need but most of us really could use one. As most of data science professionals work in their own isolations, getting an unbiased perspective is not easy. Many times, it is also not easy to understand how the data science progression is going to be. Getting a network of mentors address these issues easily, it gives data professionals an outside perspective and unbiased ally. It’s extremely important for successful data science professionals to build a mentor network and use it through their success.

[ DATA SCIENCE Q&A]

Q:How to efficiently scrape web data, or collect tons of tweets?
A: * Python example
* Requesting and fetching the webpage into the code: httplib2 module
* Parsing the content and getting the necessary info: BeautifulSoup from bs4 package
* Twitter API: the Python wrapper for performing API requests. It handles all the OAuth and API queries in a single Python interface
* MongoDB as the database
* PyMongo: the Python wrapper for interacting with the MongoDB database
* Cronjobs: a time based scheduler in order to run scripts at specific intervals; allows to bypass the “rate limit exceed” error

Source

[ VIDEO OF THE WEEK]

Data-As-A-Service (#DAAS) to enable compliance reporting

 Data-As-A-Service (#DAAS) to enable compliance reporting

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

Data beats emotions. – Sean Rad, founder of Ad.ly

[ PODCAST OF THE WEEK]

#FutureOfData Podcast: Conversation With Sean Naismith, Enova Decisions

 #FutureOfData Podcast: Conversation With Sean Naismith, Enova Decisions

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

By 2020, at least a third of all data will pass through the cloud (a network of servers connected over the Internet).

Sourced from: Analytics.CLUB #WEB Newsletter