Dec 13, 18: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Statistics  Source

[ LOCAL EVENTS & SESSIONS]

More WEB events? Click Here

[ AnalyticsWeek BYTES]

>> Big Data Advances in Customer Experience Management by bobehayes

>> Tackling 4th Industrial Revolution with HR4.0 – Playcast – Data Analytics Leadership Playbook Podcast by v1shal

>> Jeff Palmucci / @TripAdvisor discusses managing a #MachineLearning #AI Team by v1shal

Wanna write? Click Here

[ NEWS BYTES]

>>
 Global Sentiment Analysis Software Market Size, Growth Opportunities, Current Trends, Forecast by 2025 – Redfield Herald (press release) (blog) Under  Sentiment Analysis

>>
 Ultimate Software Climbs Into the Cloud – Motley Fool Under  Cloud

>>
 Google Analytics updated with Google Material Theme tweaks on the web – 9to5Google Under  Analytics

More NEWS ? Click Here

[ FEATURED COURSE]

Artificial Intelligence

image

This course includes interactive demonstrations which are intended to stimulate interest and to help students gain intuition about how artificial intelligence methods work under a variety of circumstances…. more

[ FEATURED READ]

Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking

image

Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the “data-analytic thinking” necessary for e… more

[ TIPS & TRICKS OF THE WEEK]

Grow at the speed of collaboration
A research by Cornerstone On Demand pointed out the need for better collaboration within workforce, and data analytics domain is no different. A rapidly changing and growing industry like data analytics is very difficult to catchup by isolated workforce. A good collaborative work-environment facilitate better flow of ideas, improved team dynamics, rapid learning, and increasing ability to cut through the noise. So, embrace collaborative team dynamics.

[ DATA SCIENCE Q&A]

Q:Explain what a false positive and a false negative are. Why is it important these from each other? Provide examples when false positives are more important than false negatives, false negatives are more important than false positives and when these two types of errors are equally important
A: * False positive
Improperly reporting the presence of a condition when it’s not in reality. Example: HIV positive test when the patient is actually HIV negative

* False negative
Improperly reporting the absence of a condition when in reality it’s the case. Example: not detecting a disease when the patient has this disease.

When false positives are more important than false negatives:
– In a non-contagious disease, where treatment delay doesn’t have any long-term consequences but the treatment itself is grueling
– HIV test: psychological impact

When false negatives are more important than false positives:
– If early treatment is important for good outcomes
– In quality control: a defective item passes through the cracks!
– Software testing: a test to catch a virus has failed

Source

[ VIDEO OF THE WEEK]

@AnalyticsWeek Panel Discussion: Finance and Insurance Analytics

 @AnalyticsWeek Panel Discussion: Finance and Insurance Analytics

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

Without big data, you are blind and deaf and in the middle of a freeway. – Geoffrey Moore

[ PODCAST OF THE WEEK]

@AlexWG on Unwrapping Intelligence in #ArtificialIntelligence #FutureOfData #Podcast

 @AlexWG on Unwrapping Intelligence in #ArtificialIntelligence #FutureOfData #Podcast

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

And one of my favourite facts: At the moment less than 0.5% of all data is ever analysed and used, just imagine the potential here.

Sourced from: Analytics.CLUB #WEB Newsletter

Leave a Reply

Your email address will not be published. Required fields are marked *