Dec 06, 18: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Big Data knows everything  Source

[ LOCAL EVENTS & SESSIONS]

More WEB events? Click Here

[ AnalyticsWeek BYTES]

>> Development of the Customer Sentiment Index: Lexical Differences by bobehayes

>> Using Big Data In A Crisis: Nepal Earthquake by analyticsweekpick

>> Customer Loyalty and Customer Lifetime Value by bobehayes

Wanna write? Click Here

[ NEWS BYTES]

>>
 Senior Data Scientist – Built In Chicago Under  Data Scientist

>>
 Risk Analytics Market 2018-2023: Top Company, Highest manufactures, Competitors, challenges and Drivers with … – News Egypt (press release) (blog) Under  Risk Analytics

>>
 Egyptian Pollution Plan Helps Combat ‘Black Cloud’ – Voice of America Under  Cloud

More NEWS ? Click Here

[ FEATURED COURSE]

Python for Beginners with Examples

image

A practical Python course for beginners with examples and exercises…. more

[ FEATURED READ]

Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, 4th Edition

image

The eagerly anticipated Fourth Edition of the title that pioneered the comparison of qualitative, quantitative, and mixed methods research design is here! For all three approaches, Creswell includes a preliminary conside… more

[ TIPS & TRICKS OF THE WEEK]

Save yourself from zombie apocalypse from unscalable models
One living and breathing zombie in today’s analytical models is the pulsating absence of error bars. Not every model is scalable or holds ground with increasing data. Error bars that is tagged to almost every models should be duly calibrated. As business models rake in more data the error bars keep it sensible and in check. If error bars are not accounted for, we will make our models susceptible to failure leading us to halloween that we never wants to see.

[ DATA SCIENCE Q&A]

Q:Explain what a local optimum is and why it is important in a specific context,
such as K-means clustering. What are specific ways of determining if you have a local optimum problem? What can be done to avoid local optima?

A: * A solution that is optimal in within a neighboring set of candidate solutions
* In contrast with global optimum: the optimal solution among all others

* K-means clustering context:
It’s proven that the objective cost function will always decrease until a local optimum is reached.
Results will depend on the initial random cluster assignment

* Determining if you have a local optimum problem:
Tendency of premature convergence
Different initialization induces different optima

* Avoid local optima in a K-means context: repeat K-means and take the solution that has the lowest cost

Source

[ VIDEO OF THE WEEK]

Harsh Tiwari talks about fabric of data driven leader in Financial Sector #FutureOfData #Podcast

 Harsh Tiwari talks about fabric of data driven leader in Financial Sector #FutureOfData #Podcast

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

If we have data, let’s look at data. If all we have are opinions, let’s go with mine. – Jim Barksdale

[ PODCAST OF THE WEEK]

Harsh Tiwari talks about fabric of data driven leader in Financial Sector #FutureOfData #Podcast

 Harsh Tiwari talks about fabric of data driven leader in Financial Sector #FutureOfData #Podcast

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

We are seeing a massive growth in video and photo data, where every minute up to 300 hours of video are uploaded to YouTube alone.

Sourced from: Analytics.CLUB #WEB Newsletter

Leave a Reply

Your email address will not be published. Required fields are marked *